报告题目: Complex analysis, pure braid groups and nonabelian orbifold theory
报告人:黄一知教授(罗格斯大学)
时间:2025年4月28日 15:00-16:00
地点:理学院1号楼1-301
摘要:The moonshine module vertex operator algebra is in fact the first example of orbifold conformal field theories. Its construction is given by a purely algebraic method since the corresponding group is finite abelian. But for nonabelian orbifold theories, it is necessary to use complex analysis since nonabelian groups in orbifold theories are related to the pure braid group representations given by multivalued analytic functions. In this talk, I will discuss some of the deep aspects involving complex analysis, pure braid groups, twisted intertwining operators and tensor products of twisted modules in a paper jointly with Jishen Du.
报告人简介:黄一知教授现为美国罗格斯(Rutgers)大学教授,主要研究兴趣是顶点算子代数、量子场论的数学理论,及其在代数、拓扑、几何、凝聚态物理和弦论上的应用。他的代表性研究工作包括建立公理化的顶点算子代数的定义,顶点算子代数的张量范畴理论的研究,顶点算子代数框架下一般形式的Verlinde猜想的证明,并以此为基础证明了大量的重要定理等。目前为止,黄一知教授出版学术专著一部,发表研究论文70余篇,多数发表在国际顶尖数学杂志上,如Duke Math J, CMP, Trans AMS等,他引次数超过2400次。黄一知教授还是国际知名数学杂志Communications in Contemporary Mathematics的主编以及New York Journal of Mathematics 等期刊的编委会成员。
中国·浙江 买竞彩篮球彩票app市二环东路759号(313000) 浙ICP备10025412号 浙公网安备 33050202000195号 版权所有:党委宣传部